

Smart Grid and AMI Security Concerns July 23, 2009

Walt Sikora, Industrial Defender Matt Carpenter, InGuardians Joshua Wright, InGuardians

Outline

Introduction to Smart Grid Technology

- Identifying Smart Grid Resources to be Protected
- Attacker's Perspective & Attack Scenario
- Defensive Strategies
- Conclusions and Q&A

Questions maybe submitted through the WebEx using the "Ask a question" function. We'll answer as many as we can at the end of the presentation.

Smart Grid 101

Traditional Meters

Automated Meter Reading (AMR) Advanced Metering Infrastructure (AMI)

Motivation Behind Smart Grid

- Energy Conservation
 - Cooperative participation in reducing energy utilization (utility and consumers)
- Cost Reduction
 - Improved management and predictability of utilization
- Improved Reliability of Delivery
 - Significantly improved monitoring and fault detection capabilities

Economic Recovery and Reinvestment Act: \$4.5B for "Smart Grid" technology

What is the "Smart Grid"?

- Key Components:
 - Advanced Metering Infrastructure
 - Transmission / Distribution / Outage Management
 - Generation
- Features:
 - Interval meter data (two way communications)
 - Load Control (reducing consumption)
 - Demand Response (usage profiles)
 - Decentralized Power Generation (Wind & Solar)
 - Resilience (fault isolation and detection)
 - Personal Electric Vehicle (PEV) (Energy storage)

Smart Grid Components

- Enterprise/Internet
- Transmission
 Substation –
 Traditional SCADA
- WAN "backhaul"
- Distribution
 Substation –
 Traditional SCADA
- NAN Proprietary communication
- Demand Response/Load Control – Utility and Third-party
- HAN ZigBee, 6LoWPAN, etc...

What is "AMI"?

- Advanced Metering Infrastructure:
 - Two-way communication between utility and meters
 - Meter reading (electric, gas, water)
 - Disconnect switch (a.k.a. provisioning)
 - Load Control (e.g., ZigBee from meter to thermostat/PCT)
 - Basis of Smart Grid... AMI is the base network

Load Control

- Certain appliances tagged as "deferrable"
- Utility may turn them off
- Used for grid reliability only...
 - Avoid rolling blackouts
 - Avoid heavy penalties by PUC
- Consumers get price incentives for participation

Demand Response

- Consumer-owned system
 - Both residential and commercial
- Demand Response system gets dynamic pricing info
- Consumer decides how to use energy
- Systems designed to automate changes to energy use based on cost
 - Switch to low-cost lighting
 - Schedule clothes-dryer cycles
 - Adjust Heat and pool pumps

©2009, InGuardians & Industrial Defender

Outline

- Introduction to Smart Grid Technology
 - Identifying Smart Grid Resources to be Protected
- Attacker's Perspective & Attack Scenario
- Defensive Strategies
- Conclusions and Q&A

What Are We Protecting?

- Personally Identifiable Information (PII)
 - Power consumption analysis
 - When at you home? What activities are you engaged in?
- The availability of Electricity
 - Increase Grid reliability
 - Diverting power from alternate sources
 - Localized or widespread outage through disconnects
- AMI and SG Networks
 - Skype or P2P file sharing over AMI?
- Generation/Transmission/Distribution
 - Damage or destruction of these can make for a very bad day
- Revenue Streams
 - Theft, fraud, avoiding penalties from PUC's for power failures

Smart Grid Components

- Generation, EMS, DMS, MDM, GIS
- MPLS, SONET Telecoms networking
- Cell Towers, Carriers Microwave
- Relays, RTUs, PLCs, Switching gear, Phasor
- Radios, RTUs, reclosers, Pole Tops
- Meters, Radios, telecom equipment
- Meters, White goods, pumps, Motors

Outline

- Introduction to Smart Grid Technology
- Identifying Smart Grid Resources to be Protected
 Attacker's Perspective & Attack Scenario
- Defensive Strategies
- Conclusions and Q&A

Attacker's Perspective

- Opportunity for financial gain
 - Theft of service by manipulating meters, NAN
 - Leveraging utilization detail for coordinated breaking and entering
- Opportunity for mischief
 - Turning off neighbor's power, manipulating billing for fraud, etc.
- Opportunity for chaos
 - Wide-spread power outages
 - Coordinated power outages to attack sensitive facilities

An Attacker's View of the What to attack? Smart Grid

- Communications
- Meters / Relays
- Head Ends
- Transmission Substations
- Distribution Substations
- Corporate Network
- How to attack?
 - Physical Attacks
 - Generation Attacks
 - General Manipulation and Disruption
 - Theft
 - Denial of Service
 - Control
 - Blackmail
 - Stalking

AMI Attack Sample Scenario Step 1: Steal a Meter

- Tools:
 - -Lock picks
 - -Screwdrivers
 - -Hacksaw
 - -Axe
 - -Rubber gloves
 - -Or... just eBay it!

Step 2: Circuit Analysis, Firmware/Data Extraction

	• 🖬			attor TT		4.00		PRATE		7		neoga		All and a		•,	Nor C	0	1
1100	22	40	00	24	10	12	12	11	BO	12	28	11	30	40	10	11	20		
11.10	11	38	52	40	80	54	20	91	DZ	D3	ZZ	-00	17	83	21	00	8728	52. T	Tri,
1150	38	40	10	63	03	47	37	**	01	39	10	13	77	11	30	49	1877	618	*#¥7.08
0621	30	11	11	H	77	13	15	44	31	. 16	37	11	11	11	30	32		****	ARRAN
1110	37	3.8	11	37	33	11	33	33	31	11	33	31	11	33	00	11	***	*****	
184	(F):	19	_			- 1	×D-	-256	D Fi	uh:	s(B	na	6						

 Access NVRAM/EEPROM data on meter

– Device firmware, configuration data

 Tools: Total Phase Beagle sniffer, Bus Pirate, syringe probes, JTAG programmers

Step 3: Recover Common Key Material

- Some meters share similar key material in a given geographic region
 - Difficulty in managing unique keys on each device for utilities and vendors

- Key content can be recovered through firmware disassembly, entropy analysis techniques
- Tools: Ent, entropy histograms, IDA Pro, envi, custom disassemblers/simulation tools

Step 4: Data Analysis (Sniffing)

- With key material, attacker can decrypt and observe command and control messages to meters
- Reversing the protocol, attacker may be able to manipulate and impersonate meters
- Possibly traversing beyond NAN into WAN or other utility infrastructure
- Tools: Specialty or standardized sniffers for NAN wireless protocols, USRP/GNURadio, protocol reverse engineering tools, custom scripts

Step 5: Experimentation

- Attacker discovers command and control technique to turn off power to a home
- Replicates technique through experimentation on other homes
 - If he's smart, randomly selected targets that do not reveal attacker's location
- Tools: Time, Patience, Creativity

Step 6: Impact Demonstration

- Attacker wants to gain financial benefit for his work
 - Selects target area to attack
- Disables power for target for brief duration
 - Large enough target such that utility hears about it, but not large enough to raise significant concern in the media
- Attacker uses impact for utility extortion, targeted businesses

Range of Utility Scope?

- Once proven, attacker can engage in largescale load shedding
- One utility can serve many areas

 Potentially discontiguous geographically
- Recovery from outages is not a simple task
 - Remember the North East Blackout in 2003?

Outline

- Introduction to Smart Grid Technology
- Identifying Smart Grid Resources to be Protected
- Attacker's Perspective & Attack Scenario
 - Defensive Strategies
- Conclusions and Q&A

Defensive Strategies

- For Vendors
- For Utilities

- Component-level
- Network-level
- System-level
- Architecture-level

A End-to-End Smart Grid Defense Strategy is Imperative

Vendor Defensive Strategies

- Secure design of architecture
- Secure key storage mechanisms
- Appropriate encryption & trust management
 - Authentication, authorization, accounting (AAA)
 - Secure communications
- Tamper protection
- Firmware secure code development lifecycle
- Monitoring and detection capabilities
- Comprehensive security review
- Product penetration testing

Utility Company Defensive Strategies

- Secure design of architecture
- Secure operations and firmware upgrades
- Back-end application automation integration and validation
- Operational processes around supervisory control activities (e.g., rate limiting, threshold alerting, etc.)
- Monitoring and detection
 - Knowing what's known and understood; everything else is suspicious
- Personnel security background checks
- Incident response capabilities
- Comprehensive security review
- Vulnerability assessment and penetration testing

Outline

- Introduction to Smart Grid Technology
- Identifying Smart Grid Resources to be Protected
- Attacker's Perspective & Attack Scenario
- Defensive Strategies
 - Conclusions and Q&A

Conclusions

- Smart Grid technology is complex, encompassing many areas
 - AMI, transmission and distribution, generation, load shedding
- Protecting customer PII, grid reliability, and critical infrastructure is vital
 - Attack damage can be significant
- Multiple opportunities for an attacker to exploit the system
- Many defensive strategies and tactics are available today

In our next session we will drill deep into other Smart Grid areas focusing on Attacks and Defenses

Questions and Answers

- Please submit questions using the instructions provided by the webcast moderator
- After the webcast, feel free to contact the presenters for additional information:
 - Walt Sikora: wsikora@industrialdefender.com
 - Matt Carpenter: matt@inguardians.com
 - Josh Wright: josh@inguardians.com
- Slides will be posted at <u>www.inguardians.com</u>
- Recording and next webcast details be posted at www.industrialdefender.com

